3.11 The Time-Independent Schrödinger Equation (Stationary States)

There are many physically interesting problems in which the potential energy of the particle does not depend on the time, that is, $V=V(\boldsymbol{r})$. In such cases the solution of the Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\mathbf{r}, t)\right) \Psi(\mathbf{r}, t)
$$

It is possible to use the method of separation of variables. This method consists of assuming that the wave function $\Psi(r, t)$ can be written as a product of two functions a function of position only, $\Psi(r)$, and a function of time only, $f(t)$:

$$
\begin{equation*}
\Psi(\mathbf{r}, t)=\psi(\mathbf{r}) f(t) \tag{3.59}
\end{equation*}
$$

Then the Schrödinger Equation becomes

$$
i \hbar \psi(\mathbf{r}) \frac{d f(t)}{d t}=f(t)\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})\right] \psi(\mathbf{r})
$$

Dividing both sides by $\psi(\mathbf{r}) f(t)$, we get

$$
i \hbar \frac{1}{f(t)} \frac{d f(t)}{d t}=\frac{1}{\psi(\mathbf{r})}\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})\right] \psi(\mathbf{r})
$$

Note that the left-hand side depends only on t and right-hand side only on \boldsymbol{r}. Therefore, both sides must be equal to a constant. We shall denote this constant by E because, this constant is equal to the energy of the particle, we thus obtain the two equations

$$
\begin{array}{r}
i \hbar \frac{d f(t)}{d t}=E f(t) \tag{3.60}\\
{\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})\right] \psi(\mathbf{r})=E \psi(\mathbf{r})}
\end{array}
$$

The first of these equations depends only on the time t. It can be immediately integrated to give

$$
\begin{equation*}
f(t)=\exp \left(-\frac{i E t}{\hbar}\right) \tag{3.62}
\end{equation*}
$$

The second equation depends only on the space coordinates. It is called the time-independent Schrödinger equation. The solution of this equation depends on the particular form of the potential $V(\boldsymbol{r})$.

The full solution of the time-dependent Schrödinger equation can be written as

$$
\begin{equation*}
\Psi(\mathbf{r}, t)=\psi(\mathbf{r}) \exp (-i E t / \hbar) \tag{3.63}
\end{equation*}
$$

We may write time-independent Schrödinger equation as

$$
\begin{equation*}
H \psi(\mathbf{r})=E \psi(\mathbf{r}) \tag{3.64}
\end{equation*}
$$

where H is the Hamiltonian operator

$$
\begin{equation*}
H=-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\mathbf{r}) \tag{3.65}
\end{equation*}
$$

Equation (3.64) has the following special property:

- The operator H acting on the function $\Psi(r)$ gives the function multiplied by the constant E. $\widehat{H} \Psi=E \Psi$. Such an equation is called an eigenvalue equation.
- The function Ψ is called an eigenfunction of the operator H and E is the eigenvalue.
- In general, many eigenfunctions and eigenvalues may correspond to a given H . The set of all the eigenvalues is called the eigenvalue spectrum of H.
- Since H is the Hamiltonian, the eigenvalues E are called the energy eigenvalues because these are the possible energies of the system.
- To indicate that an eigenfunction corresponds to a particular eigenvalue E_{n}, we put a subscript n with $\Psi(r)$, that is, we write it as $\Psi_{n}(r)$.
- The problem of solving the Schrödinger equation thus reduces to finding the eigenvalues and eigenfunctions of the Hamiltonian H.

3.12 Degeneracy

Sometimes it happens that more than one linearly independent eigenfunctions correspond to the same eigenvalue. The eigenvalue is then said to be degenerate.

- If there are k linearly independent eigenfunctions corresponding to the same eigenvalue, then this eigenvalue is said to be k-fold degenerate.
- Any linear combination of the degenerate eigenfunctions is also an eigenfunction corresponding to the same eigenvalue.
- If $\Psi_{1}, \Psi_{2}, \ldots, \Psi_{k}$ are linearly independent eigenfunctions corresponding to an eigenvalue E, then $\Psi=\mathrm{c}_{1} \Psi_{1}+\mathrm{c}_{2} \Psi_{2}+\ldots+\mathrm{c}_{k} \Psi_{k}$ is also an eigenfunction corresponding to E.

3.13 Reality of Eigenvalues

To prove that all the energy eigenvalues are real.
Let E be the eigenvalue corresponding to the eigenfunction Ψ. Then

$$
H \psi=E \psi
$$

Since the Hamiltonian H is a Hermitian operator, we have

$$
\int \psi^{*} H \psi d \mathbf{r}=\int(H \psi)^{*} \psi d \mathbf{r}
$$

These equations give

$$
\begin{aligned}
\int \psi^{*} E \psi d \mathbf{r} & =\int E^{*} \psi^{*} \psi d \mathbf{r} \\
\text { or } \quad\left(E-E^{*}\right) \int \psi^{*} \psi d \mathbf{r} & =0
\end{aligned}
$$

Since the probability integral $\int \psi^{*} \psi d \mathbf{r}$ is necessarily positive, it follows that

$$
E=E^{*}
$$

Hence the eigenvalues of H are real.

3.14 Stationary States

The position probability density corresponding to the states represented by 'separable' wave functions $\quad \Psi(\mathbf{r}, t)=\psi(\mathbf{r}) \exp (-i E t / \hbar)$ is independent of time:

$$
\begin{aligned}
P(\mathbf{r}, t) & =\Psi^{*}(\mathbf{r}, t) \Psi(\mathbf{r}, t) \\
& =\psi^{*}(\mathbf{r}) e^{i E t / \hbar} \psi(\mathbf{r}) e^{-i E t / \hbar} \\
& =\psi^{*}(\mathbf{r}) \psi(\mathbf{r})
\end{aligned}
$$

Therefore, these states are called stationary states.
The expectation value of the total energy operator in a state described by the wave function $\Psi(\mathbf{r}, t)=\psi(\mathbf{r}) \exp (-i E t / \hbar)$ is equal to the energy eigenvalue of that state for all time if the wave function is normalized:

$$
\begin{aligned}
& \int \Psi^{*}(\mathbf{r}, t) H \Psi(\mathbf{r}, t) d \mathbf{r} \\
= & \int \psi^{*}(\mathbf{r}) e^{i E t / \hbar} H \psi(\mathbf{r}) e^{-i E t / \hbar} d \mathbf{r} \\
= & \int \psi^{*}(\mathbf{r}) E \psi(\mathbf{r}) d \mathbf{r} \\
= & E \int \psi^{*}(\mathbf{r}) \psi(\mathbf{r}) d \mathbf{r} \\
= & E
\end{aligned}
$$

3.15 Orthogonality of Eigenfunctions

The eigenfunctions corresponding to distinct eigenvalues are orthogonal. We prove it below. Let ψ_{k} and ψ_{n} be the eigenfunctions corresponding to the eigenvalues E_{k} and E_{n}, respectively. Then
and

$$
\begin{align*}
& H \psi_{k}=E_{k} \psi_{k} \tag{3.66}\\
& H \psi_{n}=E_{n} \psi_{n} \tag{3.67}
\end{align*}
$$

Taking complex-conjugate of (3.67) and remembering that E_{n} is real,

$$
\begin{equation*}
\left(H \psi_{n}\right)^{*}=E_{n} \psi_{n}^{*} \tag{3.68}
\end{equation*}
$$

Pre-multiplying (3.66) by ψ_{n}^{*} and post-multiplying (3.68) by ψ_{k}, we obtain

$$
\begin{align*}
\psi_{n}^{*}\left(H \psi_{k}\right) & =E_{k} \psi_{n}^{*} \psi_{k} \tag{3.69}\\
\left(H \psi_{n}\right)^{*} \psi_{k} & =E_{n} \psi_{n}^{*} \psi_{k} \tag{3.70}
\end{align*}
$$

and
Subtracting (3.70) from (3.67) and integrating, we obtain

$$
\left(E_{k}-E_{n}\right) \int \psi_{n}^{*} \psi_{k} d \mathbf{r}=\int\left[\psi_{n}^{*}\left(H \psi_{k}\right)-\left(H \psi_{n}\right)^{*} \psi_{k}\right] d \mathbf{r}
$$

Since H is Hermitian, the integral on the right-hand side is zero. Therefore,

$$
\left(E_{k}-E_{n}\right) \int \psi_{n}^{*} \psi_{k} d \mathbf{r}=0
$$

Since $E_{k} \neq E_{n}$, this gives

$$
\int \psi_{k}^{*} \psi_{n} d \mathbf{r}=0
$$

This shows that the eigenfunctions are orthogonal.
If the eigenfunctions are normalized, then combining the normalization condition with the orthogonality condition, we have

$$
\begin{array}{r}
\int \psi_{k}^{*} \psi_{n} d \mathbf{r}=\delta_{k n} \\
\delta_{k n}=1 \text { for } k=n \quad \delta_{k n}=0 \text { for } k \neq n
\end{array}
$$

This equation is known as the orthonormality condition.

3.16 Parity

For simplicity we shall discuss the one-dimensional case. Suppose the potential function is symmetric about the origin, i.e., it is an even function:

$$
\begin{equation*}
V(x)=V(-x) \tag{3.72}
\end{equation*}
$$

Let us study the behavior of the Schrödinger equation under the operation of reflection through the origin, $x \rightarrow-x$. This operation is called the parity operation. The Schrödinger equation is

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x) \tag{3.73}
\end{equation*}
$$

Replacing x by $-x$, we get

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(-x)}{d x^{2}}+V(x) \psi(-x)=E \psi(-x) \tag{3.74}
\end{equation*}
$$

where we have used (3.72). Comparing these equations we note that $\psi(x)$ and $\psi(-x)$ are eigenfunctions corresponding to the same eigenvalue E. There are two possible cases:

Case 1: If the eigenvalue is nondegenerate then $\psi(x)$ and $\psi(-x)$ can differ only by a multiplicative constant:

$$
\psi(-x)=c \psi(x)
$$

Changing the sign of x in this equation, we get

$$
\psi(x)=c \psi(-x)
$$

Combining these two equations,
so that

$$
\begin{aligned}
\psi(x) & =c^{2} \psi(x) \\
c^{2} & =1 \\
c & = \pm 1
\end{aligned}
$$

or
Therefore,

$$
\begin{equation*}
\psi(-x)= \pm \psi(x) \tag{3.75}
\end{equation*}
$$

This shows that the eigenfunctions can be divided into two classes. The one for which

$$
\begin{equation*}
\psi(-x)=\psi(x) \tag{3.76}
\end{equation*}
$$

are said to have even parity. The other, for which

$$
\begin{equation*}
\psi(-x)=-\psi(x) \tag{3.77}
\end{equation*}
$$

are said to have odd parity.
Case 2: If the eigenvalue is degenerate then $\psi(-x)$ need not be a multiple of $\psi(x)$. In that case, $\psi(x)$ and $\psi(-x)$ are two linearly independent solutions corresponding to the same eigenvalue. Therefore, any linear combination of $\psi(x)$ and $\psi(-x)$ is also a possible eigenfunction. We can choose two linear combinations as

$$
\begin{aligned}
& \psi_{+}(x)=\psi(x)+\psi(-x) \\
& \psi_{-}(x)=\psi(x)-\psi(-x)
\end{aligned}
$$

and
Clearly $\psi_{+}(x)$ has even parity while $\psi_{-}(x)$ has odd parity.

