
29 
 

3.11 The Time-Independent Schrödinger Equation (Stationary States) 

There are many physically interesting problems in which the potential energy of the particle 

does not depend on the time, that is, 𝑉 = 𝑉(𝒓). In such cases the solution of the Schrödinger 

equation  

 

It is possible to use the method of separation of variables. This method consists of assuming 

that the wave function Ψ(𝑟, 𝑡) can be written as a product of two functions a function of 

position only, Ψ(𝑟), and a function of time only, 𝑓(𝑡): 

 

Then the Schrödinger Equation becomes 

 

Note that the left-hand side depends only on 𝑡 and right-hand side only on 𝒓. Therefore, both 

sides must be equal to a constant. We shall denote this constant by 𝐸 because, this constant is 

equal to the energy of the particle, we thus obtain the two equations 

 

The first of these equations depends only on the time t. It can be immediately integrated to give 

 

The second equation depends only on the space coordinates. It is called the time-independent 

Schrödinger equation. The solution of this equation depends on the particular form of the 

potential 𝑉(𝒓).  

The full solution of the time-dependent Schrödinger equation can be written as 

 

…(3.59) 

 

 

…(3.61) 

 

 

…(3.60) 
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We may write time-independent Schrödinger equation as 

 

 

Equation (3.64) has the following special property: 

• The operator 𝐻 acting on the function Ψ(𝑟) gives the function multiplied by the constant 

𝐸.  𝐻̂Ψ = 𝐸Ψ . Such an equation is called an eigenvalue equation.  

• The function Ψ is called an eigenfunction of the operator H and E is the eigenvalue.  

• In general, many eigenfunctions and eigenvalues may correspond to a given H. The set of 

all the eigenvalues is called the eigenvalue spectrum of 𝐻.  

• Since H is the Hamiltonian, the eigenvalues E are called the energy eigenvalues because 

these are the possible energies of the system.  

• To indicate that an eigenfunction corresponds to a particular eigenvalue 𝐸𝑛, we put a 

subscript 𝑛 with Ψ(𝑟), that is, we write it as Ψ𝑛(𝑟).  

• The problem of solving the Schrödinger equation thus reduces to finding the eigenvalues 

and eigenfunctions of the Hamiltonian 𝐻. 

3.12 Degeneracy 

 Sometimes it happens that more than one linearly independent eigenfunctions correspond 

to the same eigenvalue. The eigenvalue is then said to be degenerate. 

• If there are 𝑘 linearly independent eigenfunctions corresponding to the same eigenvalue, 

then this eigenvalue is said to be 𝑘-fold degenerate. 

• Any linear combination of the degenerate eigenfunctions is also an eigenfunction 

corresponding to the same eigenvalue. 

• If Ψ1, Ψ2, … , Ψ𝑘 are linearly independent eigenfunctions corresponding to an eigenvalue 

𝐸, then Ψ = c1Ψ1 + c2Ψ2 + … + c𝑘Ψ𝑘 is also an eigenfunction corresponding to E. 

3.13 Reality of Eigenvalues 

To prove that all the energy eigenvalues are real. 

 Let 𝐸 be the eigenvalue corresponding to the eigenfunction Ψ. Then 

 

Since the Hamiltonian H is a Hermitian operator, we have 

…(3.64) 

 

 
…(3.65) 

 

 



31 
 

 

 

3.14 Stationary States 

The position probability density corresponding to the states represented by ‘separable’ wave 

functions  is independent of time: 

 

Therefore, these states are called stationary states.  

The expectation value of the total energy operator in a state described by the wave function  

is equal to the energy eigenvalue of that state for all time if the 

wave function is normalized: 

 

3.15 Orthogonality of Eigenfunctions 

The eigenfunctions corresponding to distinct eigenvalues are orthogonal. We prove it below. 

Let 𝜓𝑘 and 𝜓𝑛 be the eigenfunctions corresponding to the eigenvalues 𝐸𝑘 and 𝐸𝑛, respectively. 

Then 

  

…(3.66) 

 

 

…(3.67) 
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Taking complex-conjugate of (3.67) and remembering that 𝐸𝑛 is real, 

 

Pre-multiplying (3.66) by 𝜓𝑛
∗  and post-multiplying (3.68) by 𝜓𝑘, we obtain 

 

Subtracting (3.70) from (3.67) and integrating, we obtain 

 

Since 𝐻 is Hermitian, the integral on the right-hand side is zero. Therefore, 

 

This shows that the eigenfunctions are orthogonal. 

If the eigenfunctions are normalized, then combining the normalization condition with the 

orthogonality condition, we have 

 

𝛿𝑘𝑛 = 1   𝑓𝑜𝑟  𝑘 = 𝑛                       𝛿𝑘𝑛 = 0   𝑓𝑜𝑟  𝑘 ≠ 𝑛 

This equation is known as the orthonormality condition. 

3.16 Parity 

For simplicity we shall discuss the one-dimensional case. Suppose the potential function is 

symmetric about the origin, i.e., it is an even function: 

 

Let us study the behavior of the Schrödinger equation under the operation of reflection through 

the origin, 𝑥 → −𝑥 . This operation is called the parity operation. The Schrödinger equation is 

…(3.68) 

 

 

…(3.70) 

 

 

…(3.69) 

 

 

…(3.71) 

 

 

…(3.72) 
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where we have used (3.72). Comparing these equations we note that 𝜓(𝑥) and 𝜓(−𝑥)  are 

eigenfunctions corresponding to the same eigenvalue 𝐸. There are two possible cases: 

Case 1: If the eigenvalue is nondegenerate then 𝜓(𝑥) and 𝜓(−𝑥)  can differ only by a 

multiplicative constant: 

 

 

This shows that the eigenfunctions can be divided into two classes. The one for which 
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